Что такое многоядерный процессор. Процессоры

Процессор в мобильном телефоне. Характеристики и их значение

Индустрия смартфонов с каждым днем прогрессирует, и, как результат, пользователи получают всё более новые, современные и мощные гаджеты. Все производители смартфонов стремятся сделать свое творение особенным и незаменимым. Поэтому на сегодняшний день большое внимание уделяется разработке и производству процессоров для смартфонов.

Наверняка, у многих любителей «умных телефонов» не раз возникал вопрос, что такое процессор, и какие его основные функции? А также, несомненно, покупателей интересует, что обозначают все эти циферки и буквы в названии чипа.
Предлагаем немного ознакомиться с понятием «процессор для смартфона» .

Процессор в смартфоне - это самая сложная деталь и отвечает она за все вычисления, производимые устройством. По сути, говорить, что в смартфоне используется процессор, неправильно, так как процессоры как таковые в мобильных устройствах не используются. Процессор вместе с другими компонентами образуют SoC (System on a chip – система на кристалле), а это значит, что на одной микросхеме находится полноценный компьютер с процессором, графическим ускорителем и другими компонентами.

Если речь заходит о процессоре, то сперва надо разобраться с таким понятием, как «архитектура процессора» . Современные смартфоны используют процессоры на архитектуре ARM, разработкой которой занимается одноименная компания ARM Limited. Можно сказать, что архитектура - это некий набор свойств и качеств, присущий целому семейству процессоров. Компании Qualcomm, Nvidia, Samsung, MediaTek, Apple и другие, занимающиеся производством процессоров, лицензируют технологию у ARM и затем продают готовые чипы производителям смартфонов или же используют их в собственных устройствах. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии. Компания ARM Limited не производит процессоры, а только продает лицензии на свои технологии другим производителям.

Сейчас давайте рассмотрим такие понятия, как ядро и тактовая частота, которые всегда встречаются в обзорах и статьях о смартфонах и телефонах, когда речь идет о процессоре.

Ядро

Начнем с вопроса, а что такое ядро? Ядро – это элемент чипа, который определяет производительность, энергопотребление и тактовую частоту процессора. Очень часто мы сталкиваемся с понятием двухъядерный или четырехъядерный процессор. Давайте разберемся, что же это значит.

Двухъядерный или четырехъядерный процессор – в чем разница?

Очень часто покупатели думают, что двухъядерный процессор в два раза мощнее, чем одноядерный, а четырехъядерный, соответственно, в четыре раза. А теперь мы расскажем вам правду. Казалось бы, вполне логично, что переход с одного ядра к двум, а с двух к четырем увеличивает производительность, но на самом деле редко когда эта мощность возрастает в два или четыре раза. Увеличение количества ядер позволяет ускорить работу девайса за счет перераспределения выполняемых процессов. Но большинство современных приложений являются однопотоковыми и поэтому одновременно могут использовать только одно или два ядра. Естественно возникает вопрос, для чего тогда четырехъядерный процессор? Многоядерность, в основном, используется продвинутыми играми и приложениями по редактированию мультимедийных файлов. А это значит, что если вам нужен смартфон для игр (трехмерные игры) или съемки Full HD видео, то необходимо приобретать аппарат с четырехъядерным процессором. Если же программа сама по себе не поддерживает многоядерность и не требует затраты больших ресурсов, то неиспользуемые ядра автоматически отключаются для экономии заряда батареи. Часто для самых неприхотливых задач используется пятое ядро-компаньон, например, для работы устройства в спящем режиме или при проверке почты.

Если вам нужен обыкновенный смартфон для общения, интернет-серфинга, проверки почты или для того, чтобы быть в курсе всех последних новостей, то вам вполне подойдет и двухъядерный процессор. Да и зачем платить больше? Ведь количество ядер прямо влияет на цену устройства.

Тактовая частота

Следующее понятие, с которым нам предстоит познакомиться - это тактовая частота. Тактовая частота – это характеристика процессора, которая показывает, сколько тактов способен отработать процессор за единицу времени (одну секунду). Например, если в характеристиках устройства указана частота 1,7 ГГц - это значит, что за 1 секунду его процессор осуществит 1 700 000 000 (1 миллиард 700 миллионов) тактов .

В зависимости от операции, а также типа чипа, количество тактов, затрачиваемое на выполнение чипом одной задачи, может отличаться. Чем выше тактовая частота, тем выше скорость работы. Особенно эта разница чувствуется, если сравнивать одинаковые ядра, работающие на разной частоте.

Иногда производитель ограничивает тактовую частоту с целью уменьшения энергопотребления, потому как чем выше скорость процессора, тем больше энергии он потребляет.

И опять возвращаемся к многоядерности. Увеличение тактовой частоты (МГц, ГГц) может увеличить выработку тепла, а это крайне нежелательно и даже вредно для пользователей смартфонов. Поэтому многоядерная технология также используется как один из способов увеличения производительности работы смартфона, при этом не нагревая его в вашем кармане.

Производительность увеличивается, позволяя приложениям работать одновременно на нескольких ядрах, но есть одно условие: приложения должны последнего поколения. Такая возможность также позволяет экономить расход заряда батареи.

Кэш процессора

Еще одна важная характеристика процессора, о которой продавцы смартфонов часто умалчивают - это кэш процессора .

Кэш – это память, предназначенная для временного хранения данных и работающая на частоте процессора. Кэш используется для того, чтобы уменьшить время доступа процессора к медленной оперативной памяти. Он хранит копии части данных оперативной па-мяти. Время доступа уменьшается за счет того, что большинство данных, требуемых процессо-ром, оказываются в кэше, и количество обращений к оперативной памяти снижается. Чем больше объем кэша, тем большую часть необходимых программе данных он мо-жет в себе содержать , тем реже будут происходить обращения к оперативной памяти, и тем выше будет общее быстродействие системы.

Особенно актуален кэш в современных системах, где разрыв между скоростью работы процес-сора и скоростью работы оперативной памяти довольно большой. Конечно, возникает вопрос, почему же эту характеристику не желают упоминать? Всё очень просто. Наведем пример. Предположим, что есть два всем известных процессора (условно A и B) с абсолютно одинаковым числом ядер и тактовой частотой, но почему-то А работает намного быстрее, чем В. Объяснить это очень просто: у процессора А кэш больше, следовательно, и сам процессор работает быстрее.

Особенно разница в объеме кэша ощущается между китайскими и брендовыми телефонами. Казалось бы, по циферках характеристик всё вроде как совпадает, а вот цена устройств отличается. И вот здесь покупатели решают сэкономить с мыслью «а зачем платить больше, если нет никакой разницы?» Но, как видим, разница есть и очень существенная, только вот продавцы о ней часто умалчивают и продают китайские телефоны по завышенным ценам.

Статья постоянно обновляется. Последнее обновление 10.10.2013 р.

На данный момент рынок процессоров развивается настолько динамично, что уследить за всеми новинками и угнаться за прогрессом просто невозможно.
Но нам особо это и не нужно.
Нам, для того, чтобы купить процессор, достаточно знать для чего нужен будет компьютер, какие задачи он будет выполнять, и какую сумму денег мы готовы потратить.

На сегодняшний день заслуженными лидерами рынка процессоров являются две крупнейшие компании Intel и AMD .
Они предлагают широчайший выбор моделей любой ценовой категории. И от такого выбора процессоров разбегаются глаза.
А мы попробуем помочь Вам в этом разобраться, чтоб Вы смогли выбрать и купить производительный процессор и за нормальные деньги.

Начнём с того, что основными показателями производительности у процессора являются:

1) Архитектура процессора. Ведь новая архитектура будет всегда производительней чем предыдущая (несмотря на одинаковую частоту) .
2) Рабочая частота. Чем выше частота процессора тем он производительнее.
3) размер кэш-памяти второго и третьего уровней (L2 и L3);

Ну, а второстепенными показателями:
4) ;
5) технологический процесс;
6) набор инструкций;
и др.

Хотя сейчас находчивые консультанты в магазинах стараются больше акцентировать внимание на количестве ядер, напрямую связывая количество ядер со скоростью обработки данных и производительностью самого компьютера.

Количество ядер?

На сегодняшний день в продаже уже имеются восьми-, шести-, четырёх-, двух- и одноядерные процессоры от AMD , а также шести-, четырёх-, двух-, одноядерные от INTEL .
Но для сегодняшних программ и нужд домашнего геймера вполне достаточно двух- или четырёхъядерного процессора, работающего на высокой частоте.
Процессор с большим количеством ядер (6-8), понадобится лишь для программ кодирования видео и аудио контента, рендеринга изображений и архиваторов.

На данный момент оптимизация в игровой индустрии идет, в основном, на двухъядерные процессоры, только самое новое ПО и игры будут разрабатываться под многопоточные вычисления. Так что если Вы покупаете процессор для игр, то высокочастотный двухъядерный процессор окажется быстрее, чем низкочастотный, но трех- или четырехядерный процессор.

Внимание! У Вас нет прав для просмотра скрытого текста.


И выяснилось, что пока игрокам можно остановиться на современном двухъядерном процессоре, выбрав для себя решение с подходящим соотношением производительности и цены.
При этом стоит учитывать, что чипы Intel к тому же обладают технологией HyperThreading, позволяющей исполнять на каждом ядре две параллельные задачи. Операционная система видит 2х ядерные процессоры как четырёхядерные, а 4-х ядерные как восьмиядерные.
Процессоры с большим количеством ядер могут быть востребованы, в основном, в профессиональных приложениях и кодировании видео.
Восемь/шесть ядер пока не способна полностью загрузить ни одна игра.

Немного подытожим по ядрам.

Для офисного компьютера с головой хватит двухъядерного процессора нижнего ценового диапазона.
Типа Pentium, Celeron от Intel или A4, AthlonII X2 от AMD.

Для домашнего геймерского компьютера можно купить двухъядерный процессор Intel повышенной частоты или четырёхъядерный процессор от AMD.
Типа Core i3, Core i5 частотой от 3 ГГц Intel или A8, A10, Phenom™ II X4 с частотой от 3 ГГц AMD.

Ну, и для "заряженной" рабочей станции или геймерской системы hi-end понадобится хороший четырёхъядерный процессор нового поколения.
Типа Core i5, Core i7 от Intel, так как процессоры AMD очень редко используются в высокопроизводительных машинах.

О процессорах Core i3, Core i5 и Core i7 читаем в статьe:

Производительность процессора?

Как было указано выше, важным параметром является архитектура , на которой основан/выполнен процессор. Чем новее архитектура, тем "шустрее" показывает себя процессор в приложениях и играх. Так как любая последующая архитектура, что Intel, что AMD, будет всегда производительнее предыдущей.
На данный момент актуальны процессоры семейства Haswell (4-ое поколение) и Ivy Bridge (3-е поколение), а также процессоры архитектуры Piledriver семейства Richland, Trinity от AMD .

Также производительность процессора зависит от его рабочей частоты . Чем выше рабочая частота, тем производительней процессор. Актуальная рабочая частота ядер, на данный момент, от 3ГГц и выше.
Но при сравнении между собой процессоров AMD и INTEL при одинаковой тактовой частоте, не означает что они равны по производительности.
Особенности архитектуры позволяют процессорам INTEL показывать более высокую продуктивность даже с меньшей частотой, чем у конкурента.

Примечание: нельзя просто приплюсовать частоту двух ядер. Определяется, как два ядра по XX ГГц.

Ещё одним параметром производительности является размер, объём, сверхбыстрой кэш-памяти второго и третьего уровней L2 и L3 .
Это память с большой скоростью доступа, предназначенная для ускорения обращения к данным, которые обрабатывает процессор.
Чем больше объём кэш памяти, тем выше производительность.

Примечание: Core 2 Duo, Core 2 Quad имеют только L2, Core i5, Core i7 имеют L2+L3, процессоры AMD Athlon™ II X2 имеют только L2, Phenom™ II X4 имеют L2+L3.

У более ранних Core 2 показателем была частота шины FSB процессора. Частота шины, через которую процессор обменивается данными с оперативной памятью.
Чем выше частота FSB шины, тем выше производительность процессора.

Примечание: процессоры Core i3, Core i5 и Core i7 от компании Intel не имеют системной шины FSB, также как и в последних процессорах AMD, передача данных между памятью и процессором происходит напрямую.
Такой метод передачи данных значительно увеличил производительность.
У процессоров семейства Core i7 LGA1366 тоже нет шины FSB, а есть высокоскоростная шина QPI.

Технологический процесс (проектная норма процессора) определяет в первую очередь структурный размер тех элементов, из которых состоит процессор.
В частности, от технологического процесса производства зависит тепловыделение и энергопотребление современных процессоров.
Чем меньше эта величина (технологический процесс), тем меньше тепла выделяет процессор и меньше потребляет энергии.
Более ранние процессоры Core 2 были выполнены по 45- 65-нанометровой технологиям. Более новые Haswell и Ivy Bridge Corei3, Corei5, Core i7 четвёртого и третьего поколения по 22-нм, Sandy Bridge® Corei3, Corei5, Core i7 второго поколения от Intel и Bulldozer от AMD выполнены по технологии 32 нм.

Набор инструкций - это набор допустимых для процессора управляющих кодов и способов адресации данных. Система таких команд жестко связана с конкретным типом процессора.
Чем шире набор инструкций у процессора, тем лучше и быстрее обрабатываются данные.

Боксовая комплектация (BOX) или трей (Tray/ОЕМ)?

Боксовая (BOX) комплектация представляет собой комплект:
- сам процессор;
- кулер с нанесённой термопастой (радиатор+вентилятор);
- инструкция и документация.

Отличительной особенностью BOX-комплектации является расширенная гарантия на процессор - 3 года.
BOX-процессоры лучше брать для офисных и домашних мультимедийных систем, в которых не планируется смена охлаждения на более эффективное.
Но BOX-процессоры стоят немного дороже, чем такие же TRAY.

Трей-процессор (Tray/OEM) представляет собой только процессор. Нет кулера и документов.

В отличии от BOX гарантия на Tray-процессор всего лишь 1 год.
Tray/OEM процессоры используют фирмы-сборщики готовых брендовых компьютеров. А также энтузиасты геймеры-оверклокеры, которым не принципиальны гарантия (после разгона гарантия с изделия снимается) и родное охлаждение, т.к. на процессор сразу устанавливается более эффективное.
Tray-процессоры стоят немного дешевле.

Intel или AMD?

На эту тему всегда шли ожесточенный споры на форумах и конференциях. Вообще, эта тема является вечной. Сторонники Intel будут утверждать, что эти процессоры во всех отношениях лучше, чем у конкурента. И наоборот. Сам же я являюсь приверженцем Intel.

Если сравнить одинаковые по частоте и количеству ядер процессоры двух этих компаний, то процессоры Intel будут более производительнее. Однако в ценовом диапазоне преимущество у AMD.

Если вы собираете себе бюджетную систему на минимальные финансы, то процессоры AMD - ваш выбор. Если же у вас будет игровая или производительная вычислительная система, то выбор стоит сделать в пользу Intel.

Есть ещё один момент, материнские платы для процессоров Intel также стоят дороже, а платформа AMD соответственно дешевле. Выбирая процессор для своего ПК, нужно определится с начальными приоритетами, собрать недорогую систему на AMD или более производительную, но подороже на базе Intel.

В ассортименте каждой компании есть много моделей процессоров, начиная от бюджетных, например, Celeron у Intel и Sempron/Duron у AMD, до топовых Core i7 у Intel, A10 у AMD.

В разных приложениях результаты довольно различны, так в некоторых победу одерживают процессоры AMD, в других - Intel, поэтому выбор всегда остается за пользователем.

Просто у AMD есть одно неоспоримое преимущество - это цена. И один недостаток - процессоры от AMD не столь конструктивно надёжны и немного горячее.

У Intel тоже есть преимущество - процессоры более конструктивно надёжны и стабильны, а также менее горячие. Недостаток - цена выше, чем у конкурента.

Судя по нынешним тестам игровая производительность процессоров между INTEL и AMD имеет такой вид:




Подведём итоги:

Значит, чтобы купить максимально производительный игровой процессор для компьютера, нужно выбрать процессор с:
1) наиболее новой архитектурой;
2) максимальной частотой ядра (желательно от 3 ГГц и выше);
3) максимальным размером кэша L2/L3;
4) большим набором доступных инструкций;
5) минимальным технологическим процессом изготовления.

После прочтения этой статьи, я думаю, каждый сможет определится с тем, какой процессор купить ему для своего компьютера.
Купить процессоры за большие деньги можно всегда, но если на компьютере будут выполняться только бытовые задачи, не требующие большой вычислительной мощности - деньги будут потрачены впустую.

…в процессе развития количество ядер будет становиться всё больше и больше.

(Разработчики Intel )

Ещё core , да ещё core , да ещё много, много core !..

…Ещё совсем недавно мы не слышали и не ведали о многоядерных процессорах, а сегодня они агрессивно вытесняют одноядерные. Начался бум многоядерных процессоров, который пока – слегка! – сдерживают их сравнительно высокие цены. Но никто уже не сомневается, что будущее – именно за многоядерными процессорами!..

Что такое ядро процессора

В центре современного центрального микропроцессора (CPU – сокр. от англ. central processing unit – центральное вычислительное устройство) находится ядро (core ) – кристалл кремния площадью примерно один квадратный сантиметр, на котором посредством микроскопических логических элементов реализована принципиальная схема процессора, так называемая архитектура (chip architecture ).

Ядро связано с остальной частью чипа (называемой «упаковка», CPU Package ) по технологии «флип-чип» (flip-chip , flip-chip bonding – перевернутое ядро, крепление методом перевернутого кристалла). Эта технология получила такое название, потому что обращённая наружу – видимая – часть ядра на самом деле является его «дном», – чтобы обеспечить прямой контакт с радиатором кулера для лучшей теплоотдачи. С обратной (невидимой) стороны находится сам «интерфейс» – соединение кристалла и упаковки. Соединение ядра процессора с упаковкой выполнено с помощью столбиковых выводов (Solder Bumps ).

Ядро расположено на текстолитовой основе, по которой проходят контактные дорожки к «ножкам» (контактным площадкам), залито термическим интерфейсом и закрыто защитной металлической крышкой.

Первый (естественно, одноядерный!) микропроцессор Intel 4004 был представлен 15 ноября 1971 г. корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 108 кГц и стоил $300.

Требования к вычислительной мощности центрального микропроцессора постоянно росли и продолжают расти. Но если раньше производителям процессоров приходилось постоянно подстраиваться под текущие насущные (вечно растущие!) запросы пользователей , то теперь чипмейкеры идут с бо-о-о-льшим опережением!

Долгое время повышение производительности традиционных одноядерных процессоров в основном происходило за счет последовательного увеличения тактовой частоты (около 80% производительности процессора определяла именно тактовая частота) с одновременным увеличением количества транзисторов на одном кристалле. Однако дальнейшее повышение тактовой частоты (при тактовой частоте более 3,8 ГГц чипы попросту перегреваются!) упирается в ряд фундаментальных физических барьеров (поскольку технологический процесс почти вплотную приблизился к размерам атома: сегодня процессоры выпускаются по 45-нм технологии, а размеры атома кремния – приблизительно 0,543 нм):

Во-первых, с уменьшением размеров кристалла и с повышением тактовой частоты возрастает ток утечки транзисторов. Это ведет к повышению потребляемой мощности и увеличению выброса тепла;

Во-вторых, преимущества более высокой тактовой частоты частично сводятся на нет из-за задержек при обращении к памяти, так как время доступа к памяти не соответствует возрастающим тактовым частотам;

В-третьих, для некоторых приложений традиционные последовательные архитектуры становятся неэффективными с возрастанием тактовой частоты из-за так называемого «фон-неймановского узкого места» – ограничения производительности в результате последовательного потока вычислений. При этом возрастают резистивно-емкостные задержки передачи сигналов, что является дополнительным узким местом, связанным с повышением тактовой частоты.

Применение многопроцессорных систем также не получило широкого распространения, так как требует сложных и дорогостоящих многопроцессорных материнских плат. Поэтому было решено добиваться дальнейшего повышения производительности микропроцессоров другими средствами. Самым эффективным направлением была признана концепция многопоточности , зародившаяся в мире суперкомпьютеров, – это одновременная параллельная обработка нескольких потоков команд.

Так в недрах компании Intel родилась Hyper-Threading Technology (HTT ) – технология сверхпоточной обработки данных, которая позволяет процессору выполнять в одноядерном процессоре параллельно до четырех программных потоков одновременно. Hyper-threading значительно повышает эффективность выполнения ресурсоемких приложений (например, связанных с аудио- и видеоредактированием, 3D -моделированием), а также работу ОС в многозадачном режиме.

Процессор Pentium 4 с включенным Hyper-threading имеет одно физическое ядро, которое разделено на два логических , поэтому операционная система определяет его, как два разных процессора (вместо одного).

Hyper-threading фактически стала трамплином к созданию процессоров с двумя физическими ядрами на одном кристалле. В 2-ядерном чипе параллельно работают два ядра (два процессора!), которые при меньшей тактовой частоте обеспечивают бо льшую производительность, поскольку параллельно (одновременно!) выполняются два независимых потока инструкций.

Способность процессора выполнять одновременно несколько программных потоков называется параллелизмом на уровне потоков (TLP thread-level parallelism ). Необходимость в TLP зависит от конкретной ситуации (в некоторых случаях она просто бесполезна!).

Основные проблемы создания процессоров

Каждое ядро процессора должно быть независимым, – с независимым энергопотреблением и управляемой мощностью;

Рынок программного обеспечения должен быть обеспечен программами, способными эффективно разбивать алгоритм ветвления команд на четное (для процессоров с четным количеством ядер) или на нечётное (для процессоров с нечётным количеством ядер) количество потоков;

По сообщению пресс-службы AMD , на сегодня рынок 4-ядерных процессоров составляет не более 2% от общего объема. Очевидно, что для современного покупателя приобретение 4-ядерного процессора для домашних нужд пока почти не имеет смысла по многим причинам. Во-первых, на сегодня практически нет программ, способных эффективно использовать преимущества 4-х одновременно работающих потоков; во-вторых, производители позиционируют 4-ядерные процессоры, как Hi-End -решения, добавляя к оснастке самые современные видеокарты и объемные жесткие диски, – а это в конечном счете ещё больше увеличивает стоимость и без того недешёвых

Разработчики Intel говорят: «…в процессе развития количество ядер будет становиться всё больше и больше…».

Что ждёт нас в будущем

В корпорации Intel уже говорят не о «Мультиядерности» (Multi-Core ) процессоров, как это делается в отношении 2-, 4-, 8-, 16- или даже 32-ядерных решений, а о «Многоядерности» (Many-Core ), подразумевая совершенно новую архитектурную макроструктуру чипа, сравнимую (но не схожую) с архитектурой процессора Cell .

Структура такого Many-Core -чипа подразумевает работу с тем же набором инструкций, но с помощью мощного центрального ядра или нескольких мощных CPU , «окруженных» множеством вспомогательных ядер, что поможет более эффективно обрабатывать сложные мультимедийные приложения в многопоточном режиме. Кроме ядер «общего назначения», процессоры Intel будут обладать также специализированными ядрами для выполнения различных классов задач – таких, как графика, алгоритмы распознавания речи, обработка коммуникационных протоколов.

Именно такую архитектуру представил Джастин Раттнер (Justin R. Rattner ), руководитель сектора Corporate Technology Group Intel , на пресс-конференции в Токио. По его словам, таких вспомогательных ядер в новом многоядерном процессоре может насчитываться несколько дюжин. В отличие от ориентации на большие, энергоемкие вычислительные ядра с большой теплоотдачей, многоядерные кристаллы Intel будут активизировать только те ядра, которые необходимы для выполнения текущей задачи, тогда как остальные ядра будут отключены. Это позволит кристаллу потреблять ровно столько электроэнергии, сколько нужно в данный момент времени.

В июле 2008 г. корпорация Intel сообщила, что рассматривает возможность интеграции в один процессор нескольких десятков и даже тысяч вычислительных ядер. Ведущий инженер компании Энвар Галум (Anwar Ghuloum ) написал в своем блоге: «В конечном счете, я рекомендую воспользоваться следующим моим советом… разработчики уже сейчас должны начать думать о десятках, сотнях и тысячах ядер». По его словам, в настоящий момент Intel изучает технологии, которые смогли бы масштабировать вычисления «на то количество ядер, которые мы пока не продаём».

По мнению Галума, в конечном счете успех многоядерных систем будет зависеть от разработчиков, которым, вероятно, придется изменить языки программирования и переписать все существующие библиотеки.

Одним из этапов совершенствования архитектуры фон Неймана является распараллеливание потоков (Thread Level Parallelism , TLP ). Различают одновременную многопоточность (Simultaneous Multithreading , SMT ) и многопоточность на уровне кристалла (Chip - level Multithreading , CMT ). Эти два подхода в основном различаются представлением о том, что такое поток. Типичным представителем SMT является так называемая технология HTT (Hyper - Threading Technology ).

Первыми представителями архитектурыCMP стали процессоры, предназначенные для использования в серверах. Это был простой тандем, в таких приборах на одной подложке размещались два, по сути, независимых ядра (Рис.8,). Развитием этой схемы сначала стала структура с общей кэш – памятью рис. 9, а затем структура с многпоточностью в каждом ядре.

Преимущества многоядерных процессоров состоят в следующем.

    Простота (естественно относительная) проектирования и производства. Разработав одно эффективное ядро, его можно тиражировать в кристалле, дополняя архитектуру нужными системными компонентами.

    Заметно уменьшается энергопотребление. Если, к примеру, на кристалле разместить два ядра и заставить их работать на тактовой частоте, обеспечивающей производительность равную производительности, одноядерного «собрата», а потом сравнить энергопотребление обоих, то обнаружится, что энергопотребление уменьшается в несколько раз, поскольку оно растет почти пропорционально квадрату частоты.

В целом же, если внимательно посмотреть на рисунки 8 и 9, можно увидеть, что принципиальной разницы между, скажем, 2-х процессорной системой и ЭВМ на 2-х ядерном процессоре нет. Проблемы одинаковые. И одна из первых – соответствующая операционная система.

Способы организации работы процессоров

Главным стимулом развития архитектуры ЭВМ является повышение производительности. Один из способов повышения производительности ЭВМ - специализация (как отдельных элементов ЭВМ, так и создание специализированных вычислительных систем).

Специализация процессоров началась с 60-х годов, когда центральный процессор больших ЭВМ был освобожден от выполнения рутинной операции по вводу-выводу информации. Эта функция была передана процессору ввода-вывода, осуществляющему связь с периферийными устройствами.

Другой путь повышения производительности – отход от последовательной архитектуры фон Неймана, ориентация на параллелизм. М. Флин обратил внимание на то, что существует всего две причины, порождающие вычислительный параллелизм - независимость потоков команд, одновременно существующих в системе, и несвязанность данных, обрабатываемых в одном потоке команд. Если первая причина параллелизма вычислительного процесса достаточно известна (это прост мультипроцессирование), то на параллелизме данных остановимся более подробно, поскольку в большинстве случаев он существует скрыто от программистов и используется ограниченным кругом профессионалов.

Простейшим примером параллелизма данных является последовательность из двух команд: А=В+С; D=E*F;

Если строго следовать принципу фон Неймана, то вторая операция может быть запущена на исполнение только после завершения первой операции. Однако очевидно, что порядок выполнения этих команд не имеет никакого значения - операнды А, В и С первой команды никак не связаны с операндами D, Е и F второй команды. Другими словами, обе операции являются параллельными именно потому, что операнды этих команд не связаны между собой. Можно привести множество примеров последовательности из трех и более команд с несвязанными данными, которые приведут к однозначному выводу: практически любая программа содержит группы операций над параллельными данными.

Другой вид параллелизма данных, как правило, возникает в циклических программах обработки массивов данных. Например, при сложении элементов двух массивов одна команда может обрабатывать большой массив (множественный поток) данных. Подобные команды называются векторными, а процессор, реализующий такой режим – векторным. Можно дать такое определение: «Векторный процессор - процессор, обеспечивающий параллельное выполнение операции над массивами данных (векторами). Он характеризуется специальной архитектурой, построенной на группе параллельно работающих процессорных элементов, и предназначен для обработки изображений, матриц и массивов данных».

Существует несколько достаточно близких по смыслу классификаций программного параллелизма, из которых наиболее признанной считается классификация по шести уровням (Рис.10). Три верхних уровня параллелизма занимают крупные программные объекты - независимые задания, программы и процедуры программы. Несвязанные операторы, циклы и операции образуют нижние уровни параллелизма. Если совместить такое ранжирование с категориями М. Флина «параллельные потоки команд» и «параллельные потоки данных», то видно, что параллелизм верхнего уровня в основном достигается за счет множества независимых потоков команд, а параллелизм нижнего уровня обязан своим существованием главным образом несвязанным потокам данных.

Конвейерная обработка и конвейерные структуры

Одним из эффективных способов повышения производительности ЭВМ является конвейеризация. На рис. 11а) показана обработка в одиночном универсальном блоке, а на рис.11 б) и в) – в конвейере. Идея конвейерной обработки заключается в разбиении функции, реализуемой универсальным функциональным блоком (ФБ), между несколькими, специализированными. Все функциональные блоки конвейера должны работать с одинаковой скоростью (хотя бы в среднем). На практике последнего добиться удается редко и, как следствие, производительность конвейера снижается, поскольку период поступления входных данных определяется максимальным временем их обработки в каждом функциональном блоке. Для компенсации флуктуаций времени работы ФБ между ними включают буферные регистры. Более универсальным приёмом является включение буферных запоминающих устройств типа FIFO (рис 11 в ). Следует обратить внимание на ещё одно различие между рисунками б) и в) . В структуре в) отсутствует линия синхронизации СИ. Это не значит, что её не может быть в подобной структуре, просто существует два типа конвейеров: синхронные с общей линией синхронизации и асинхронные , без таковой. Первые ещё называют с управлением командами , а вторые – с управлением данными . Примером асинхронных конвейеров могут служить систолические массивы.

Конвейер не всегда представляет собой линейную цепочку блоков. Иногда оказывается выгодным, функциональные блоки соединят между собой не последовательно, а по более сложной схеме в соответствии с логикой обработки, при этом одни блоки в цепочке могут пропускаться, а другие – образовывать циклические структуры. Структура нелинейного конвейера, способного вычислять две функции X и Y, и диаграммы, в которой функциями X и Y востребуются те или иные функциональные блоки приведена на рис. 12

В чем различия между четырехъядерными и восьмиядерными процессорами смартфонов? Объяснение достаточно простое. В восьмиядерных чипах в два раза больше процессорных ядер, чем в четырехъядерных. На первый взгляд восьмиядерный процессор представляется вдвое более мощным, не так ли? На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Четырех- и восьмиядерные процессоры. Производительность

Сами термины «восьмиядерный» и « четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров — по крайней мере по состоянию на 2015 год — состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.


Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности.

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как и G Flex 2, ставший компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Йон Манди.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном смартфоне. Такой необходимости нет, полагает Йон Манди и приводит пример Apple, обеспечивающих достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. По мнению Йона Манди, как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения .

Знаете ли вы другие преимущества восьмиядерных процессоров смартфонов?

Понравилось? Лайкни нас на Facebook