Мультиплексоры и демультиплексоры презентация. Мультиплексоры, демультиплексоры

Мультиплексоры и демультиплексоры (mux и demux в англоязычном сокращении) представляют собой довольно распространенные компоненты в цифровой электронике. Понимание происходящих в них логических процессов позволят лучше понимать схемы с их участием и разрабатывать более сложные электронные устройства



Мультиплексоры и демультиплексоры работают противоположно друг другу, но в соответствии с одним и тем же принципом. Они состоят из информационных входов, информационных выходов и коммутатора (селектора).


На изображении ниже схематично представлены мультиплексор и демультиплексор.



Мультиплексор имеет несколько информационных входов. Коммутатор мультиплексора выбирает, какой из этих входов нужно использовать и подключает его к информационному выходу, который у мультиплексора только один. Эту ситуацию можно сравнить с тем, если бы вам куча людей хотела бы сказать что-то свое, но за один раз вы можете выслушать только одного.


Демультиплексор, наоборот, имеет только один информационный вход, и коммутатор подключает его к какому-то одному информационному выходу в каждый момент времени. То есть, это так же, как если бы вы хотели сказать что-то толпе людей, но за каждый момент времени вы можете сказать это только одному человеку из этой толпы.


Существуют также микросхемы, которые объединяют в себе функции мультиплексоров и демультиплексоров. В англоязычном варианте они обычно обозначаются mux/demux. Также они могут называться двунаправленными мультиплексорами или же просто коммутаторами. Они позволяют сигналу передаваться в обоих направлениях. Так что не только вы можете поговорить с кем-то, но и кто-то из толпы может поговорить с вами в определенный момент времени.


К внутреннему коммутатору в данном случае обычно подходят несколько информационных входов, которые адресуются в двоичной форме. Практически во всех таких микросхемах есть линия OE (output enable или выход активен). Также внутри микросхемы имеется демультиплексор с одним входом и, обычно, с четырьмя выходами. Для выбора выхода у микросхемы имеются также две линии для адресации выхода (00, 01, 10, 11).


Существуют как цифровые, так и аналоговые мультиплексоры. Цифровые представляют собой логические коммутаторы, у которых на выходе будет то же напряжение, что и напряжение питания. Аналоговые же подключают к выходу напряжение выбранного входа.


Принцип мультиплексирования и демультиплексирования использовали на заре развития телефонии в начале прошлого века. Тогда человек, который хотел позвонить своему товарищу, брал телефонную трубку и ждал ответа оператора. Это мультиплексорная часть, поскольку в определенный момент времени оператор из множества выбирает линию, на которой «сидит» этот человек. Человек сообщает, что хочет поговорить с товарищем, номер которого 12345. Это уже коммутаторная часть, здесь оператор получает номер (адрес). Далее он подключает разъем, к каналу товарища. Это демультиплексорная часть. Здесь одна линия из множества каналов соединяется только с одним.


Мультиплексоры и демультиплексоры помогут вам решить задачу с расширением количества входных или выходных линий, если число GPIO вашего микроконтроллера слишком мало. Если у вас в проекте предусмотрено много датчиков, то вы можете подключить их к мультиплексору. Выход мультиплексора затем нужно подключить к АЦП и переключая адреса линий последовательно считывать данные с датчиков.


Также мультиплексоры полезны, когда у вас есть несколько микросхем с интерфейсом I2C, которые имеют одинаковый адрес. Просто подключите линии SDA/SCL к коммутатору и управляйте ими последовательно. Мультиплексоры и демультиплексоры можно задействовать еще и в качестве преобразователей уровней.

Лабораторная работа.

Мультиплексоры и демультиплексоры

Цель работы: практическое освоение принципов построения мультиплексоров и демультиплексоров и экспериментальное их исследование на лабораторном стенде.

1.1 Мультиплексоры

Мультиплексор – это комбинационная многовходовая схема с одним выходом. Входы мультиплексора подразделяются на информационные Д 0, Д 1, …, Д n-1 и управляющие (адресные) А 0, А 1, …, А k-1. Обычно 2k = n, где k и n – число адресных и информационных входов соответственно. Двоичный код, поступающий на адресные входы, определяет (выбирает) один из информационных входов, значение переменной с которого передается на выход y , т. е. мультиплексор реализует функцию:

Таблица функционирования, описывающая работу мультиплексора, имеющего, например, n = 4 информационных (Д 0, Д 1, Д 2, Д 3) и k = 2 адресных (А 0, А 1) входов, представлена в табл. 1.

Вариант схемной реализации мультиплексора “4-1” (“четыре в один”, т. е. коммутирующего данные от одного из четырех входов на единственный выход) и его условное графическое изображение представлены на рис. 1.

Здесь мультиплексор построен как совокупность двухвходовых конъюкторов данных (их число равно числу информационных входов), управляемых выходными сигналами дешифратора, дешифрирующего двоичный адресный код. Выходы конъюкторов объединены схемой ИЛИ.

https://pandia.ru/text/77/497/images/image005_121.gif" width="272 height=23" height="23"> (2)

Из (2) следует, что при любом значении адресного кода все слагаемые, кроме одного равны нулю. Ненулевое слагаемое равно Д i , где i – значение текущего адресного кода.

В соответствии с этим соотношением строятся реальные схемы мультиплексоров, одна из которых для мультиплексора “четыре в один” приведена на рис. 2. Как правило, схема дополняется входом разрешения работы – Е (показан пунктирной линией). При отсутствии разрешения работы (Е=0) выход у становится нулевым и не зависит от комбинации сигналов на информационных и адресных входах мультиплексора.

Мультиплексоры 4-1, 8-1, 16-1 выпускаются в составе многих серий цифровых интегральных схем и имеют буквенный код КП. Например, К555КП1 – мультиплексор 2-1 (в данном корпусе размещаются четыре мультиплексора), К555КП12 – мультиплексор 4-1 (в одном корпусе размещаются два мультиплексора) и т. д.

В тех случаях, когда функциональные возможности ИС мультиплексоров не удовлетворяют разработчиков по числу информационных входов, прибегают к их каскадированию с целью наращивания числа входов до требуемого значения. Наиболее универсальный способ наращивания размерности мультиплексора состоит в построении пирамидальной структуры, состоящей из нескольких мультиплексоров. При этом первый ярус схемы представляет собой столбец, содержащий столько мультиплексоров, сколько необходимо для получения нужного числа информационных входов. Все мультиплексоры этого столбца коммутируются одним и тем же адресным кодом, составленным из соответствующего числа младших разрядов общего адресного кода. Старшие разряды адресного кода используются во втором ярусе, мультиплексор которого обеспечивает поочередную работу мультиплексоров первого яруса на общий выход.

Пирамидальная схема, выполняющая функцию мультиплексора “16-1” и построенная на мультиплексорах “4-1”, показана на рис. 3.

1.2. Демультиплексоры

Демультиплексор – схема, выполняющая функцию, обратную функции мультиплексора, т. е. это комбинационная схема, имеющая один информационный вход (Д ), n информационных выходов (у 0, у 1, …, у n-1) и k управляющих (адресных) входов (А 0, А 1, …, А k-1). Обычно, также как и мультиплексоров, 2k = n. Двоичный код, поступающий на адресные входы, определяет один из n выходов, на который передается значение переменной с информационного входа (Д ), т. е. демультиплексор реализует следующие функции:

0 " style="border-collapse:collapse;border:none">

А 0, А 1

у 0 у 1 у 2 у 3

А 0, А 1

у 0 у 1 у 2 у 3

Уравнения, описывающие работу демультиплексора:

https://pandia.ru/text/77/497/images/image015_70.gif" width="100" height="24 src="> (4)

Схема демультиплексора, построенная по данным уравнениям и его графическое изображение представлены на рис. 4.

Рис. 4. Схема демультиплексора "1-4" (а)

и его условное изображение (б)

Функция демультиплексора легко реализуется с помощью дешифратора, если его вход “Разрешение” (Е) использовать в качестве информационного входа демультиплексора, а входы 1, 2, 4 … - в качестве адресных входов демультиплексора А 0, А 1, А 2, … Действительно, при активном значении сигнала на входе Е избирается выход, соответствующий коду, поданному на адресные входы. Поэтому ИС дешифраторов, имеющих разрешающий вход, иногда называют не просто дешифраторами, а дешифраторами-демультиплексорами (например, К155ИД4, К531ИД7 и др.).

1.3 Применение мультиплексоров и демультиплексоров

1.3.1. Термином “мультиплексирование” называют процесс передачи данных от нескольких источников по общему каналу, а устройство, осуществляющее на передающей стороне операцию сведения данных в один канал, принято называть мультиплексором. Подобное устройство способно осуществлять временное разделение сигналов, поступающих от нескольких источников, и передавать их в канал (линию) связи друг за другом в соответствии со сменой кодов на своих адресных входах.

На приемной стороне обычно требуется выполнить обратную операцию – демультиплексирование, т. е. распределение порций данных, поступивших по каналу связи в последовательные моменты времени, по своим приемникам. Эту операцию выполняет демультиплексор. Совместное использование мультиплексора и демультиплексора для передачи данных от n источников к n приемникам по общей линии иллюстрирует рис. 5. (В общем случае число источников данных не равно числу приемников).

https://pandia.ru/text/77/497/images/image018_62.gif" alt="Подпись:" align="left" width="253" height="123 src=">

0 " style="border-collapse:collapse;border:none">

№ бригады

(вариант)

Размерность

Мультиплексора

Тип (базис) ЛЭ

ОФПН(И, ИЛИ, НЕ)

ОФПН(И, ИЛИ, НЕ)

2.2. Исследовать работу (снять таблицу истинности) ИС мультиплексора К531КП2.

2.3. На основе ИС мультиплексора К531КП2 спроектировать и испытать схему, реализующую логическую функцию, соответствующую вашему варианту (табл. 5).

Таблица 5

№ бригады

(вариант)

Логическая функция

Равнозначность двух переменных

Неравнозначность двух переменных

3. Контрольные вопросы

1. Дайте определение мультиплексора и демультиплексора.

2. Перечислите применения мультиплексоров и демультиплексоров.

3. В чем суть каскадирования мультиплексоров? Объясните как на основе ИС мультиплексоров “8-1” спроектировать мультиплексор на 16, 32, и т. д. входов.

4. На основе ИС мультиплексора “8-1” спроектируйте схему, реализующую логическую функцию:

4.1. четности трехразрядного слова (четности числа единиц в трехразрядном слове);

4.2. нечетности трехразрядного слова;

4.3. у=х 1х 2+х 1х 3+х 2х 3.

5. Объясните как с помощью демультиплексора можно осуществить преобразование последовательного кода в параллельный.

6. Объясните как с помощью мультиплексора можно осуществить преобразование параллельного кода в последовательный.

7. Данные от одного из четырех источников должны последовательно передаваться по одной линии одному из трех приемников. Спроектируйте схемы и объясните работу ЦУ передающей и приемной сторон, обеспечивающих такую возможность.

Мультиплексором — называют комбинационное устройство, обеспечивающее передачу в желаемом порядке цифровой информации, поступающей по нескольким входам на один выход. Мультиплексоры обозначают через MUX (от англ. multiplexor), а также через MS (от англ. multiplex or selector).

Схематически можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Кроме информационных входов в мультиплексоре имеются адресные входы и, как правило, разрешающие (стробирующие). Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных входов n и числом адресных входов m действует соотношение n = 2 m , то такой мультиплексор называют полным. Если n< 2 m , то мультиплексор называют неполным.

Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, т. е. могут блокировать действие всего устройства.

Функционирование двухвходового мультиплексора

Рассмотрим функционирование двухвходового мультиплексора (2 →1), который условно изображен в виде коммутатора, а состояние его входов Х 1 Х 2 и выхода Y приведено в таблице (рис. 3.41).

Исходя из таблицы, можно записать следующее уравнение:

Y = X 1 A + X 2 A

На рис. 3.42 показаны реализация такого устройства и его условное графическое обозначение.


Основой данной схемы являются две схемы совпадения на элементах И, которые при логическом уровне «1» на одном из своих входов повторяют на выходе то, что есть на другом входе.

Если необходимо расширить число входов, то используют каскадное включение мультиплексоров. В качестве примера рассмотрим мультиплексор с четырьмя входами (4 → 1), построенный на основе мультиплексоров (2 → 1).

Схема и таблица состояний такого мультиплексора приведены на рис.3.43.



Мультиплексоры являются универсальными логическими устройствами, на основе которых создают различные комбинационные и последовательностные схемы. Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры часто используют для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и кончая последним.

Мультиплексор как устройство сдвига

Рассмотрим пример использования мультиплексоров для реализации так называемого комбинационного устройства сдвига, обеспечивающего сдвиг двоичного, числа по разрядам. Принцип функционирования данного устройства понятен из схемы устройства и таблицы состояний его входов и выходов (рис. 3.44).


В обозначении мультиплексоров используют две русские буквы КП, например, промышленностью выпускаются такие мультиплексоры, как К155КП1, К531КШ8, К561КПЗ, К555КП17 и др.

Демультиплексором называют устройство, в котором сигналы с одного информационного входа, поступают в желаемой последовательности по нескольким выходам в зависимости от кода на адресных шинах. Таким образом, демультиплексор в функциональном отношении противоположен мультиплексору. Демультиплексоры обозначают через DMX или DMS.

Если соотношение между числом выходов n и числом адресных входов m определяется равенством n= 2 m , то такой демультиплексор называется полным, при n< 2 m демультиплексор является неполным.

Функционирование демультиплексора с двумя выходами

Рассмотрим функционирование демультиплексора с двумя выходами, который условно изображен в виде коммутатора, а состояние его входов и выходов приведено в таблице (рис. 3.45).


Из этой таблицы следует: Y 1 =X·А Y 2 = X·А т. е. реализовать такое устройство можно так, как показано на рис. 3.46.



Для наращивания числа выходов демультиплексора используют каскадное включение демультиплексоров. В качестве примера (рис. 3.47) рассмотрим построение демультиплексоров с 16 выходами (1 → 16) на основе демультиплексоров с 4 выходами (1 → 4).


При наличии на адресных шинах А 0 и А 1 нулей информационный вход X подключен к верхнему выходу DМХ 0 и в зависимости от состояния адресных шин А 2 и А 3 он может быть подключен к одному из выходов DMX 1 . Так, при А 2 = А 3 = 0 вход X подключен к Y 0 . При А 0 = 1 и А 1 = 0 вход X подключен к DMX 2 , в зависимости от состояния А 2 и А 3 вход соединяется с одним из выходов Y 4 − Y 7 и т.д.

Функции демультиплексоров

Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора. Поэтому в обозначении как дешифраторов, так и демультиплексоров используются одинаковые буквы — ИД. Выпускают дешифраторы (демультиплексоры) К155ИДЗ, К531ИД7 и др.

При использовании КМОП-технологии можно построить двунаправленные ключи, которые обладают возможностью пропускать ток в обоих направлениях и передавать не только цифровые, но и аналоговые сигналы. Благодаря этому можно строить мультиплексоры-демультиплек-соры, которые могут использоваться либо как мультиплексоры, либо как демультиплексоры. Мультиплексоры-демультиплексоры обозначаются через MX. Среди выпускаемых мультиплексоров-демультиплексоров можно выделить такие, как К564КП1, К590КП1. Мультиплексоры-демультиплексоры входят в состав серий К176, К561, К591, К1564.

Мультиплексоры и демультиплексоры

Мультиплексоры и демультиплексоры относятся к классу комбинационных устройств, которые предназначены для коммутации потоков данных в линиях связи по заданным адресам. Большая часть данных в цифровых системах передается непосредственно по проводам и проводникам печатных плат. Часто возникает необходимость в передаче информационных двоичных сигналов (или аналоговых в аналого-цифровых системах) от источника сигналов к потребителям. В некоторых случаях нужно передавать данные на большие расстояния по телефонным линиям, коаксиальным и оптическим кабелям. Если бы все данные передавались одновременно по параллельным линиям связи, общая длина таких кабелей была бы слишком велика и они были бы слишком дороги. Вместо этого данные передаются по одному проводу в последовательной форме и группируются в параллельные данные на приемном конце этой единственной линии связи. Устройства, используемые для подключения одного из источников данных с заданным номером (адресом) к линии связи, называются мультиплексорами. Устройства, используемые для подключения линии связи к одному из приемников информации с указанным адресом, называются демультиплексорами. Параллельные данные одного из цифровых устройств с помощью мультиплексора могут быть преобразованы в последовательные информационные сигналы, которые передаются по одному проводу. На выходах демультиплексора эти последовательные входные сигналы могут быть снова сгруппированы в параллельные данные.

1. Мультиплексоры

Теоретические сведения

В цифровых устройствах часто возникает необходимость пере­дать цифровую информацию от m различных устройств к n приёмникам через канал общего пользования. Для этого на входе канала, устанавливают устройство М (рис.1.1), называемое мультиплексором, которое согласно коду адреса Аm подключает к каналу один из m («1 из m») источников информации, а на выходе канала устройство DM (демультиплексор) обеспечивает передачу информации к приемнику, имеющему цифровой адрес Аn.

То есть мультиплексор – это комбинационное устройство, предназначенное для подключения одного из n входных сигналов к общему выходу в соответствии с кодом адреса. Применительно к компьютерной схемотехнике: мультиплексор – это функциональный узел цифровой системы, предназначенный для коммутации (переключения) информации от одного из m адресуемых входов на общий выход. Номер конкретной входной линии, подключаемой к выходу, в каждый такт машинного времени определяется адресным кодом А 0 ,…А k -1 . Связь между числом информационных m и адресных k входов определяется соотношением m2 k . Таким образом, мультиплексор реализует управляемую передачу данных от нескольких входных линий в одну выходную.

Принцип работы мультиплексора (и демультиплексора) наглядно демонстрирует рис. 1.1.

Функция мультиплексоров в поле типа ЛЭ записывается буквами MUX (multiplexor). Условное графическое обозначение (УГО) мультиплексора показано на рис.1.2.

Мультиплексоры применяются для коммутации отдельных линий или групп линий (шин), преобразования параллельного кода в последовательный, реализации логических функций нескольких переменных, построения схем сравнения, генераторов кодов. Применительно к мультиплексорам пользуются так же термином «селекторы» данных.

Мультиплексоры включают в себя дешифратор адреса. Сигналы дешифратора управляют логи­ческими вентилями, разрешая передачу информации только через один из них. Логика функционирования мультиплексора для m=4 описывается табл.1.1, где x 0 ,...,x 3 – выходы независимых источников информации, а переменные А 0 , А 1 являются адресными, т.е. представляют в двоичном коде номер информационного входа, подключаемого в данный момент к выходу Y. Тогда функционирование мультиплексора описывается таблицей истинности табл. 1.1:

х 3 х 2 х 1 х 0

В терминах булевой алгебры функция мультиплексора имеет вид:

Простейший мультиплексор, реализующий заданное табл.1.1 преоб­разование, может быть построен на логических элементах И, ИЛИ в сочетании с дешифратором адреса. В такой структуре сигнал на выходе мультиплексора Y устанавливается с задержкой адресных сигналов в логических ступенях дешифратора (рис.1.3,а).

Быстродействие мультиплексора можно увеличить, ес­ли совместить дешифратор адреса и информационные вентили (рис.1.3,б).

Стробирующий вход С (на рис.1.3,б) используется для исключения несанкционированного подключения к выходу случайных входов на время смены адресов. Короткий запирающий импульс (строб-импульс) обеспечивает отключение выхода от входов на время переадресации.

Рассмотрим некоторые схемотехнические применения мультиплексо­ров. Вполне очевидным является использование мультиплексора в ка­честве преобразователя параллельного m-разрядного двоичного ко­да в последовательный. Для этого достаточно на входы мультиплексо­ра подать параллельный код и затем последовательно изменять код адреса в требуемой последовательности. При этом во избежание появления ложного сигнала на выходе мультиплексора строб-импульс на время переключения адреса должен отключать выход от входов.


Мультиплексоры могут быть использованы для построения логи­ческих функций нескольких переменных в виде дизъюнктивной нормальной формы. Пусть логическая функция определена пятью независимыми пере­менными. Если их подать на адресные входы, соответствующего мульти­плексора на 2 5 = 32 информационных входа (мультиплексорное дерево), то для получения на выходе Q любой функции пяти переменных достаточно подать логические единицы на информационные входы, адрес которых совпадает с минтермами синтезируемой функции. На остальные входы необходимо подать логические нули, исключив тем самым соответствующие комбинации из выходной функции. Такой метод приемлем, если функция m переменных содержит близкое к 2 m количество минтермов, в противном случае схема получается избыточной.

Мультиплексор может быть использован более эффективно, если аргументы функций подавать не только на адресные, но и на информационные входы. Для этого аргументы синтезируемой функции f(х 1 …,х m) разделяются на информационные вхо­ды D i и адресные входы (А j) так, чтобы последними управляли пере­менные, наиболее часто входящие в минтермы функции.

В интегральном исполнении мультиплексоры выпускают на четыре, восемь или шестнадцать входов. Каскадирование мультиплексоров позволяет реализовать коммутацию произвольного числа входных линий на базе серийных микросхем мультиплексора меньшей разрядности. Пример построения схемы мультиплексоров на 16 входов на основе типовых 4-входовых мультиплексоров показан на рисунке 1. Такая схема называется мультиплексорным деревом.

Алгоритм синтеза устройства, реализующего логическую функцию на основе мультиплексора, включает в себя сле­дующие операции:

    представить функцию в виде СДНФ;

    для данной СДНФ заполнить карту Карно (Вейча);

    на карте Карно (Вейча) выделить области по количеству информационных входов мультиплексора. Количество строк m и столбцов n в таких областях должно удовлетворять условию: m,n=2 k , где k=0,1,2,…Переменные, сохраняющие свое значение в пределах выделенных областей, являются адресными, а остальные – информационными;

    подать адресные переменные любым способом на адресные входы выбранного (или заданного) мультиплексора, определив таким образом однозначное соответствие адресных областей определенному информационному входу;

    для каждой области найти МДНФ/МКНФ относительно информационных переменных, для управления информационными входами;

    с помощью тождественных преобразований МДНФ/МКНФ привести к виду, удобному для совместной реализации;

    реализовать схемы по каждому информационному входу мультиплексора в выбранном элементном базисе.

Приведем пример построения мультиплексора, реализующего некоторую функцию:

Для данной функции построим карту Карно:

2. Пусть задан мультиплексор с 4 информационными входами (2 входа – адресные). На карте Карно выделим адресные области. Для выбранного варианта разбиения на адресные области адресными стали переменные X 1 , X 3 . Их можно двумя способами подать на адресные входы: A 1 =X 1, A 0 =X 3 либо A 1 =X 3 , A 0 =X 1 (способ подачи не имеет значения). Тогда адресным областям соответствуют информационные входы D 0 , D 1 , D 2, D 3 (показаны на карте Карно). Адресные области определяют функции управления соответствующим информационным входом мультиплексора.

    Минимизируем функции управления:

D 1 =X 0 , D 2 =X 0 ,

Реализуем полученные функции (рис. 1.5):

Исследование мультиплексора

Цель работы – исследование логики функционирования, статических и динамических параметров комбинационных устройств на примере четырехвходового мультиплексора, построенного на элементах Шеффера.

Принципиальная схема четырехвходового мультиплексора приведена на рис. 1.6.

Рабочее задание

    Собрать исследуемую схему мультиплексора (рис. 1.7). На схеме генераторы прямоугольных импульсов G1, G2, G3, G4 имитируют источники входных данных, а 2-разрядный двоичный счетчик на триггерах Тг1, Тг2 обеспечивает периодическую смену адресов мультиплексора.

Методические указания

    В схеме (рис. 1.7) использовать модели идеальных компонентов или серии ЛЭ, заданные преподавателем.

    Подать сигналы от генераторов с частотами f 0, f 1 , f 2 , f 3 , f 4 – по заданию преподавателя, источник напряжения V1 = U ип.

    При нормальном функционировании мультиплексора на его выходе должны сформироваться серии импульсов с частотами f 1 , f 2 , f 3 , f 4 (вход осциллоскопа В). Для исследования переходных процессов в мультиплексоре отключите генератор G0 от входа триггера Тг1 и подключите его ко входам R триггеров.. Определите частоту статические и динамические параметры сигнала на выходе мультиплексора.

    Подключите генератор G0 ко входу триггера Тг1, а входы Logic Analyzer - в точки схемы, как показано на рис. 1.7.

Контрольные вопросы

    Что такое мультиплексор и для чего мультиплексоры используются?

    Приведите уравнение, описывающее работу четырехвходового мультиплексора.

    Объясните назначение информационных входов.

    Для чего в мультиплексорах используется стробирующий вход?

    От чего зависит быстродействие мультиплексора?

    Для чего применяют каскадирование мультиплексоров?

2. Демультиплексоры

Теоретические сведения

Демультиплексором называется функциональный узел компьютера, предназначенный для коммутации (переключения) сигнала единственного информационного входа D на один из n информационных выходов. Номер выхода, на который в каждый такт машинного времени подается значение входного сигнала, определяется адресным кодом A 0 ,A 1 …,A m-1 . Адресные входы m и информационные выходы n связаны соотношением n2 m. В качестве демультиплексора может быть использован дешифратор DC. При этом информационный сигнал подается на вход разрешения Е (от англ. enable – разрешение). Стробируемый демультиплексор с информационным входом D, адресными входами А 1 , А 0 и стробирующим входом С показан на рисунке 2.1. Демультиплексор выполняет функцию, обратную функции мультиплексора. Применительно к мультиплексорам и демультиплексорам пользуются так же термином «селекторы» данных.

Демультиплексоры используют для коммутации отдельных линий и многоразрядных шин, преобразования последовательного кода в параллельный. Как и мультиплексор, демультиплексор включают в себя дешифратор адреса. Сигналы дешифратора управляют логи­ческими вентилями, разрешая передачу информации только через один из них (рис.1.1)

Логика функционирования демультиллексора для случая n=4 иллюстрируется табл. 2.1, где y0,…,у3 – входы приемников информации.

Адрес А 1 А 0

Выход Y 0 Y 1 Y 2 Y 3

Рабочее задание

    Собрать исследуемую схему мультиплексора (рис. 2.4). На схеме генератор прямоугольных импульсов G1 имитирует источник входных данных, а 2-разрядный двоичный счетчик на триггерах Тг1, Тг2 обеспечивает периодическую смену адресов мультиплексора. (рис. 2.4).

Методические указания

Контрольные вопросы

    Что такое демультиплексор и для чего демультиплексоры используются?

    Приведите уравнения, описывающие работу демультиплексора на четыре выхода.

    Объясните назначение адресных входов.

    Для чего в демультиплексорах используется стробирующий вход?

    От чего зависит быстродействие демультиплексора?

    Для чего применяют каскадирование демультиплексоров?

Литература

    Элементы цифровой схемотехники: Учеб. пособие/ В.П.Сигорский, В.И. Зубчук, А.Н. Шкуро. –Киев: УМК ВО, 1990.

    Бабіч Н.П., Жуков І.А. Комп’ютерна схемотехніка. Київ 200

    Зубчук В.И., Сигорский В.П., Шкуро А.Н. Справочник по цифровой схемотехнике. – К.: “Техніка”, 1990.

  1. Волоконно-оптические сети и системы связи

    Конспект >> Коммуникации и связь

    Разветвители и ответвители, оптические мультиплексоры /демультиплексоры , оптические фиксированные аттенюаторы, оптические... оптические компенсаторы хроматической дисперсии, оптические мультиплексоры /демультиплексоры и фильтры. Перечисленные устройства, ...

  2. Постановка лабораторной работы по курсу волоконно-оптические системы связи

    Реферат >> Промышленность, производство

    Оптические разветвители…………………………………………………………..25 3.1 Мультиплексоры и демультиплексоры …………………………………..25 3.2 Делители оптической мощности... оптическими несущими и называются мультиплексорами демультиплексорами соответственно). Вторые используются для...

  3. Компютерна схемотехніка (2)

    Курсовая работа >> Информатика

    МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЧЕРНІВЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ЮРІЯ ФЕДЬКОВИЧА Факультет комп’ютерних наук Кафедра комп’ютерних систем та мереж Курсова робота Комп’ютерна схемотехніка 2007 Лінійні дешифратори. Функції алгебри логіки, ...

3.7. Мультиплексоры и демультиплексоры

Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему единственному выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует управляющему двоичному коду.

Ну и частное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Структуру мультиплексора можно представить различными схемами, например, вот этой:

Рис. 1 – Пример схемы конкретного мультиплексора

Самый большой элемент здесь это элемент И-ИЛИ на четыре входа. Квадратики с единичками - инверторы.

Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них подают информацию, которую предстоит выбрать. Входы А0-А1 называются адресными входами. Сюда и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y . Вход С – синхронизация, разрешение работы.

На схеме еще есть входы адреса с инверсией. Это чтобы сделать устройство более универсальным.

На рисунке показан, как еще его называют, 4Х1 мультиплексор. Как мы знаем, что число разных двоичных чисел, которые может задавать код, определяется числом разрядов кода как 2 n , где n – число разрядов. Задавать нужно 4 состояния мультиплексора, а, значит, разрядов в коде адреса должно быть 2 (2 2 = 4).

Для пояснения принципа работы этой схемы посмотрим на её таблицу истинности:

Так двоичный код выбирает нужный вход. Например, имеем четыре объекта, и они подают сигналы, а устройство отображения у нас одно. Берем мультиплексор. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта.

Микросхемой мультиплексор обозначается так:

Рис. 2 – Мультиплексор как МКС

Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и много выходов. Двоичный код определяет, какой выход будет подключен ко входу.

Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких своих выходов и подключает его к своему входу или, ещё, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов.

Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И частное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный.

Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования.

Из-за сходства схем мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексором и демультиплексором, смотря с какой стороны подавать сигналы.

Например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то есть, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (логических 0 или 1) существует возможность переключения аналоговых.

Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Рассмотрим схему селектора входов УМЗЧ . Построим её с использованием триггеров и мультиплексора.

Рис. 3 - Селектор входных сигналов

Итак, разберем работу. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор.

В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки.

Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажатии на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого.

С одной стороны просто, с другой немного неудобно. Кто его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу сейчас. Хорошо бы поставить индикатор подключенного входа.

Вспоминаем семисегментный дешифратор. Переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выводы 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выводы 1 и 13). Входы дешифратора 4 и 8 (выводы 2 и 6) соединяем с корпусом (т. е. подаем лог. 0). Индикатор будет показывать состояние кольцевого счетчика, а именно цифры от 0 до 3. Цифра 0 соответствует первому входу, 1 - 2-му и т. д.

Понравилось? Лайкни нас на Facebook